Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 19(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34436299

RESUMO

Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.


Assuntos
Ciguatera , Dinoflagellida/química , Toxinas Marinhas/química , Oxocinas/química , Animais , Organismos Aquáticos , Mar Mediterrâneo , Relação Estrutura-Atividade
2.
Toxins (Basel) ; 13(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34437451

RESUMO

The Selvagens Islands, which are a marine protected area located at the southernmost point of the Portuguese maritime zone, have been associated with fish harboring ciguatoxins (CTX) and linked to ciguatera fish poisonings. This study reports the results of a field sampling campaign carried out in September 2018 in these remote and rarely surveyed islands. Fifty-six fish specimens from different trophic levels were caught for CTX-like toxicity determination by cell-based assay (CBA) and toxin content analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, high toxicity levels were found in fish with an intermediate position in the food web, such as zebra seabream (Diplodus cervinus) and barred hogfish (Bodianus scrofa), reaching levels up to 0.75 µg CTX1B equivalent kg-1. The LC-MS/MS analysis confirmed that C-CTX1 was the main toxin, but discrepancies between CBA and LC-MS/MS in D. cervinus and top predator species, such as the yellowmouth barracuda (Sphyraena viridis) and amberjacks (Seriola spp.), suggest the presence of fish metabolic products, which need to be further elucidated. This study confirms that fish from coastal food webs of the Selvagens Islands represent a high risk of ciguatera, raising important issues for fisheries and environmental management of the Selvagens Islands.


Assuntos
Ciguatera , Ciguatoxinas/análise , Ciguatoxinas/química , Ciguatoxinas/toxicidade , Peixes , Animais , Oceano Atlântico , Ilhas , Portugal , Especificidade da Espécie
3.
Toxins (Basel) ; 12(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392808

RESUMO

Over the last decade, knowledge has significantly increased on the taxonomic identity and distribution of dinoflagellates of the genera Gambierdiscus and Fukuyoa. Additionally, a number of hitherto unknown bioactive metabolites have been described, while the role of these compounds in ciguatera poisoning (CP) remains to be clarified. Ciguatoxins and maitotoxins are very toxic compounds produced by these dinoflagellates and have been described since the 1980s. Ciguatoxins are generally described as the main contributors to this food intoxication. Recent reports of CP in temperate waters of the Canary Islands (Spain) and the Madeira archipelago (Portugal) triggered the need for isolation and cultivation of dinoflagellates from these areas, and their taxonomic and toxicological characterization. Maitotoxins, and specifically maitotoxin-4, has been described as one of the most toxic compounds produced by these dinoflagellates (e.g., G. excentricus) in the Canary Islands. Thus, characterization of toxin profiles of Gambierdiscus species from adjacent regions appears critical. The combination of liquid chromatography coupled to either low- or high-resolution mass spectrometry allowed for characterization of several strains of Gambierdiscus and Fukuyoa from the Mediterranean Sea and the Canary Islands. Maitotoxin-3, two analogues tentatively identified as gambieric acid C and D, a putative gambierone analogue and a putative gambieroxide were detected in all G. australes strains from Menorca and Mallorca (Balearic Islands, Spain) while only maitotoxin-3 was present in an F. paulensis strain of the same region. An unidentified Gambierdiscus species (Gambierdiscus sp.2) from Crete (Greece) showed a different toxin profile, detecting both maitotoxin-3 and gambierone, while the availability of a G. excentricus strain from the Canary Islands (Spain) confirmed the presence of maitotoxin-4 in this species. Overall, this study shows that toxin profiles not only appear to be species-specific but probably also specific to larger geographic regions.


Assuntos
Ciguatoxinas/análise , Dinoflagellida/metabolismo , Toxinas Marinhas/análise , Oxocinas/análise , Água do Mar/microbiologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Microbiologia da Água , Oceano Atlântico , Cromatografia Líquida de Alta Pressão , Dinoflagellida/classificação , Mar Mediterrâneo
4.
Toxins (Basel) ; 12(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326183

RESUMO

Ciguatera poisoning (CP) is a common seafood intoxication mainly caused by the consumption of fish contaminated by ciguatoxins. Recent studies showed that Caribbean ciguatoxin-1 (C-CTX1) is the main toxin causing CP through fish caught in the Northeast Atlantic, e.g., Canary Islands (Spain) and Madeira (Portugal). The use of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) combined with neuroblastoma cell assay (N2a) allowed the initial confirmation of the presence of C-CTX1 in contaminated fish samples from the abovementioned areas, nevertheless the lack of commercially available reference materials for these particular ciguatoxin (CTX) analogues has been a major limitation to progress research. The EuroCigua project allowed the preparation of C-CTX1 laboratory reference material (LRM) from fish species (Seriola fasciata) from the Madeira archipelago (Portugal). This reference material was used to implement a liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) for the detection of C-CTX1, acquisition of full-scan as well as collision-induced mass spectra of this particular analogue. Fragmentation pathways were proposed based on fragments obtained. The optimized LC-HRMS method was then applied to confirm C-CTX1 in fish (Bodianus scrofa) caught in the Selvagens Islands (Portugal).


Assuntos
Ciguatoxinas/análise , Peixes , Contaminação de Alimentos/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Animais , Oceano Atlântico , Monitoramento Biológico , Cromatografia Líquida , Ciguatera , Portugal , Espectrometria de Massas em Tandem
5.
Foods ; 9(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963478

RESUMO

The biodiversity of lactic acid bacteria in musts and wines of Albariño variety has been studied. The identification of species was addressed through a combination of biochemical and genetic methods (API® 50 CHL test, 16S rDNA and recA gene sequences, Amplified Ribosomal DNA Restriction Analysis -ARDRA- and 16S-26S intergenic region analysis). The results grouped the isolates into six species predominating those of the genus Lactobacillus and showing a typical biogeographical distribution. Among sixteen strains evaluated, eight of them showed malolactic activity. The study of the presence of genes hdc, odc, and tdc, along with the LC/MS-MS analysis of biogenic amines in wine, showed five strains lacking aminogenic ability. The absence of the pad gene in the above-mentioned strains discards its ability to produce volatile phenols that may adversely affect the aroma. Finally, all malolactic strains showed ß-glucosidase activity so that they could contribute to enhance and differentiate the aromatic profile of Albariño wines.

6.
J AOAC Int ; 97(2): 285-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830138

RESUMO

This paper shows the results of an intralaboratory validation of a fast method for the determination of lipophilic shellfish toxins working under acidic conditions using ultra-high performance LC (UHPLC) with MS/MS. Fourteen lipophilic marine toxins and domoic acid were acquired with fast polarity switching. Whereas azaspiracids (AZAs), pecenotoxins, 13-desmethyl spirolide C (SPX1), and gymnodimine were analyzed in the positive mode, yessotoxins (YTXs) were measured in negative mode. The okadaic acid (OA) group compounds were analyzed in both positive and negative ionization modes, and the accuracy of the results for both were compared. When using dynamic multiple reaction monitoring (MRM) in fast polarity switching, LODs were lower and reproducibility and linearity were better compared to static MRM. The UHPLC separation allowed for higher sample throughput in routine use. Compared to the previously used HPLC/MSIMS method, LODs were improved up to a factor of 10 in mussel extract. Matrix effects were evaluated by comparing standards prepared in solvent with matrix-matched calibrations in blank mussel extract. For accurate quantification matrix-matched calibrations were used when analyzing reference mussel materials, providing recoveries for OA, Dynophysis toxins (DTX)1, DTX2, YTX, AZA1, and SPX1 between 80 and 120% with RSDs below 8% over a 3-day validation procedure.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Toxinas Marinhas/química , Frutos do Mar/análise , Espectrometria de Massas em Tandem/métodos , Animais , Análise de Alimentos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...